home *** CD-ROM | disk | FTP | other *** search
Wrap
InstantCalc1.1 for instantaneous calculations, ©1996-2000 Special Symbols ˇ.˝decimal point or thousands separator˜(depending on the number format settings) ˇ,˝decimal point or thousands separator˜(depending on the number format settings) ˇ;˝separator of argument lists ˇ"˝first character of a comment:¸sin(π/3) "and a comment… Dyadic Operators (sorted with respect to its precedence) ˇ=˚subtraction with lowest priority (specially useful in combination with the ˇNewton solver to subtract the right side of an equation from the left one) ˇ´˝number of decimal digits: π´5Ì= 3.14159 ˇ`˝number of significant digits: 10*π`4˚= 31.42 ˇ?˚comparison operator (behaves like a subtraction) ˇ+ -Óaddition and subtraction ˇ* /Ômultiplication and division ˇ÷ : %¯modulo, integral division, remainder ˇ^¸power:Â2^3^2È= (2^3)^2ˆ= 64Ì(evaluation from the left) ˇ√˚root:Ì3√5Ò= √(3;5)˚= 3√5 ˇ@˜2D distance:Èx @ yÈ= √(x2 + y2) Monadic Operators (always highest priority) ˇ-˝negation:ˆ-x ˇ√˚square root:Î√3ˆ= sqrt(3) = 2√3 = 1.732050807568877294 ˇ|˛absolute value:˙|y˘= |y|; |-4 = |4 = 4 ˇ!˝factorial:¯!n¯= n! if n ≤ 25 and integral, else gamma(n+1) ˇ°˝radiant -> grad:˚°x¯= x*180/πÛ(angle conversions, useful for ˇ•˝grad -> radiant:˚•x¯= x*π/180Û the trigonometric functions) ˇç˚pt -> cm:˘çxˆ= x*2.54/72Î(measurement conversions, ˇ¶˚cm -> pt:˘¶xˆ= x*72/2.54Î useful in graphics applications) Decimal/Hexadecimal/Binary Conversion Operators ˇ$˚precedes a hexadecimal number (only for integral values) ˇ$20 + 5ˇ= 37 ˇ&˙converts the result to a hexadecimal number (non integral results are rounded ˇbefore (see rint). "&" must be the first character of the expression.) ˇ&10 + 20 + $1E¸= $3C ˇ#˚precedes a binary number (only for integral values) ˇ#11100101 + 5˝= 234 ˇ\˝converts the result to a binary number (non integral results are rounded ˇbefore (see rint). "\" must be the first character of the expression.) ˇ\10 + 20 + $1Eˇ= #00111100 Functions With One Argument ˇabsÒabsolute value:˙abs(x)Ê= |x| ˇnegÒnegation:ˆneg(x)Ê= -x ˇsignÔsign function:Âsign(x) ˛= {-1 for x < 0; 0 for x = 0; 1 for x > 0} ˇsqrtsquare root:Îsqrt(x)Â= √x ˇsqrÛpower of 2:sqr(x)Ë= x2 ˇcubeÏpower of 3:cube(x)˝= x3 ˇgradÓradians -> grad:˘grad(x)ˇ= x*180/πÛ(angle conversions, useful for ˇradÛgrad -> radians:˘rad(x)Ë= x*π/180Û the trigonometric functions) ˇrounding functions; please note: binary representations of decimal numbers are always inexact. ˇFor example, the binary representation of 0.5 is identical to 0.49999999999999999999, therefore: ˇrintÛrint(0.5)¸= rint(0.49999999999999999999)Ë= 0 but not 1 ˇroundÈround(0.5)Ú= round(0.49999999999999999999)˙= 1 but not 0 ˇrint(4.25)˜= round(4.25) = 4 ˇrint(5.66)˜= round(5.66) = 6 ˇtruncÎneglect decimals:Òtrunc(π)¸= 3 ˇfactfactorial:¯fact(x)Â= x! if x ≤ 25 and integral, else gamma(x+1) ˇfactLnÊlog-factorial:ÈfactLn(x)˜= ln(x!) if x ≤ 25 and integral else gammaLn(x+1) ˇpermÏpermutations: ˛perm(n) ˚= n! if n ≤ 25 and integral, else gamma(n+1) ˇgammaˇgamma function ˇgammaLnılog-gamma function Exponential Functions ˝expÒbase eÂexp(x)Ê= ex ˇexpm1Âexpm1(x)ˆ= ex - 1 ˇexp10Ábase 10¸exp10(x)¯= 10x ˇexp2Ïbase 2Âexp2(x)˝= 2x Logarithms ˇln˘base eÂln(x) ˇlnp1Ôlnp1(x) ˛= ln(x + 1) ˇlg˘base 10¸lg(100) ˛= 2; lg(2) = 0.3010299956639811952 ˇlb˘base 2Âlb(64) Á= 6 Trigonometric Functions (arguments always in radians) ˇsinÙsineÔsin(π/3)˝= 0.8660254037844386467 ˇcosÒcosineÂcos(•45)˙= 0.7071067811865475244 ˇtanÛtangent ˇcotÛcotangent Inverse Trigonometric Functions (results always in radians) ˇasinÔinverse sineÎasin(0.5)¯= 0.5235987755982988731 ˇacosÏinverse cosine˝°acos(0.5)Ú= 60 ˇatanÓinverse tangent ˇacotÓinverse cotangent Hyperbolic Functions ˇsinhÔhyperbolic sine ˇcoshÏhyperbolic cosine ˇtanhÓhyperbolic tangent ˇcothÓhyperbolic cotangent ˇasinhÍinverse hyperbolic sine ˇacoshÁinverse hyperbolic cosine ˇatanhÈinverse hyperbolic tangent ˇacothÈinverse hyperbolic cotangent Functions With Two And Three Arguments (separated by semicolon) ˇrootroot(n; x)˜= √(n;x) ˇscalbÍscalb(x; n)Ò= x*2n ˇpy2DÎpy2D(x; y)Ú= √(x2 + y2) ˇpy3DÎpy3D(x; y; z)Ë= √(x2 + y2 + z2) ˇphaseÁphase(x; y)Ó= phase angle between x and y (electrical definition) ˇgaussÁgauss(x; s) Ï= Gauß (normal) distribution around 0 with standard deviation s ˇgaussLn˘gaussLn(x; s) ˛= log normal distribution around 1 with standard deviation s ˇggtÛggt(x; y)˙= largest common divisor ˇkgvÒkgv(x; y)¯= smallest common multiple ˇcombÍcomb(n; k)Ò= combinations˘= n!/[k!(n-k)!]Êbinomial coefficient ˇ comb(49; 6)Ù= 13983816 ˇvarÛvar(n; k)˙= variationsÎ= n!/(n-k)! ˇcompnd¸compnd(r; n)È= (1 + r)n¯but compound is more exact ˇannuity˛annuity(r; n)Î= [1 - (1+r)-n]/r˛but annuity is more exact Functions With Variable Number Of Arguments (up to 1000 arguments, separated by semicolon or carriage return) ˇ∑˙sum function:Â∑(1;2;3;4;5;6;7;8;9)Á= 45 ˇ∏¯product function:Û∏(1;2;3;4;5;6;7;8;9)Â= 362880 ˇm˘arithmetic mean:ım(1;2;3;4;5;6;7;8;9)Ê= 5 ˇs˚standard deviation:Ís(1;2;3;4;5;6;7;8;9)Ë= 2.738612787525830567 ˇ1˚∏(ı1˚m(ˆ1˚s(¯1 ˇ2˚2˚2˚2 ˇ3˚3˚3˚3 ˇ4˚4˚4˚4 ˇ5 = 15 ˛5) = 120¯5) = 3 5) = 1.581138830084189666 Function Without Argument ˇrandÓequally distributed random numbers between -1 and 1 (linear congruential method) ˇri+1Û= (3250998893 * ri + 907633343) mod 4294967295 ˇrandÓ= ri+1/2147483647; (-1 ≤ rand ≤ 1) Numerical Methods (numerical accuracy can be adjusted in the InstantCalc control panel) ˇ∫…∂Romberg integration:ı∫sin(u)∂u; 0; π] = 2 ˇ∫1/(1 + sqr(t))∂t;-1; 1] = 1.5707963… (= π/2) ˇ∫gauss(t; 1)∂t; -1; 1] = 0.6826… ”…“ is a place holder for the function which should be integrated with respect to the independent variable which must follow ”∂“ directly. The integration limits, separated by semicolon, and a square bracket complete the formula. ˇ«…»ÌNewton solver:¸«sin(u)»u; 3] = 3.14159… ˇ«3*x^2 + 6*x = 45»x; 2] = 3 ”…“ is a place holder for the function which should be solved to zero with respect to the independent variable which must follow ”»“ directly. The first guess of the Newton series, separated by semicolon, and a square bracket complete the formula. Encapsulation of both methods into each other is possible: ˇ∫∫py2D(x; y)∂x; -1; 1]∂y; -1; 1] = 3.0607… ˇ«∫gauss(x; 1)∂x; -y; y] = 0,95»y; 1] = 1.95996… Logical Functions (result of the last argument is compared to 0) ˇEQÛEQ(1; 0; x ? y)˛= 1Úif x = y,ˇelseÔ0˚(equal) ˇODÛOD(1; 0; √x)Î= 1Úif x ≥ 0,ˇelseÔ0˚(ordered; √x Œ R?) ˇUNÙUN(1; 0; ln(x))= 1Úif x < 0,ˇelseÔ0˚(unordered; ln(x) Œ R?) ˇNEÙNE(1; 0; x ? y)ˇ= 1Úif x ≠ y,ˇelseÔ0˚(not equal) ˇGTÙGT(1; 0; x ? y)ˇ= 1Úif x > y,ˇelseÔ0˚(greater than) ˇGEÛGE(1; 0; x ? y)˛= 1Úif x ≥ y,ˇelseÔ0˚(greater or equal) ˇLTˆLT(1; 0; x ? y) ˇ= 1Úif x < y,ˇelseÔ0˚(less than) ˇLEıLE(1; 0; x ? y)= 1Úif x ≤ y,ˇelseÔ0˚(less or equal) ˇSEQÌSEQ(5; x)Ù= xÚif x = 0,ˇelseÔ5 ˇSODÌSOD(5; √x)Ô= √xÔif x ≥ 0,ˇelseÔ5 ˇSUNÓSUN(5; √x)= √xÔif x < 0,ˇelseÔ5˚(√-1 = NaN; Not a Number) ˇSNEÓSNE(5; x)ı= xÚif x ≠ 0,ˇelseÔ5 ˇSGTÓSGT(5; x)ı= xÚif x > 0,ˇelseÔ5 ˇSGEÌSGE(5; x)Ù= xÚif x ≥ 0,ˇelseÔ5 ˇSLTSLT(5; x)˜= xÚif x < 0,ˇelseÔ5 ˇSLEÔSLE(5; x)ˆ= xÚif x ≤ 0,ˇelseÔ5 Constants ˇtrue= 1 ˇfalseÏ= 0 ˇe˚= 2.718281828459045235 ˇπ, piÌ= 3.141592653589793238 ˇln10Ô= 2.302585092994045684 ˇgoldÔ= 0.6180339887498948482È(golden ratio) ˇ∞, inf, INFÙ= 1/0 (IEEE-inf) ˇnan, NaN˜= Not a Number ˇmaxIÏ= 32767 ˇmaxLÍ= 2147483647 ˇminRÏ= 1.822599765941237301e-4951 ˇmaxRÈ= 1.189731495357231765e+4932 ˇprecÓ= 1.084202172485504434e-19Û(Macintosh numerical precision = smallest ˇ positive number p for which: 1 + p > 1) Atomic Weights Of The Elements In The Periodic Table (in g/mol) examplesÙH*2+OÂ= 18.01528Ìmolecular weightıof water ˇC*2+H*5+O+H˛= 46.06904Ìof ethanol ˇH*2+S+O*4 Î= 98.07948Ìof sulfuric acid ˇ250*Cr/(Cr+O*3)´4Ì= 129.9977Ìamount of chromium in 250 g chromic acid periodic table 1.ıH˙=˚ 1.00794ÛHydrogen ˇHeı=˚ 4.002602ÓHelium 2.ıLi˘=˚ 6.941˝Lithium ˇBeı=˚ 9.012182ÓBeryllium ˇB˙=˚ 10.811¸Boron ˇC˙=˚ 12.011¸Carbon ˇN˙=˚ 14.00674ÚNitrogen ˇO˘=˚ 15.9994˜Oxygen ˇF˚=˚ 18.9984˜Fluorine ˇNeı=˚ 20.1797˜Neon 3.ıNaı=˚ 22.98977ÚSodium ˇMgÙ=˚ 24.305¸Magnesium ˇAl¯=˚ 26.98154ÚAluminium ˇSi¯=˚ 28.0855˜Silicon ˇP˙=˚ 30.97376ÚPhosphorus ˇS˙=˚ 32.066¸Sulfur ˇCl¯=˚ 35.4527˜Chlorine ˇAr˜=˚ 39.948¸Argon 4.ıK˙=˚ 39.0983˜Potassium ˇCaı=˚ 40.078¸Calcium ˇScı=˚ 44.95591ÚScandium ˇTi˘=˚ 47.88 ˇTitanium ˇV˙=˚ 50.9415˜Vanadium ˇCr˜=˚ 51.9961˜Chromium ˇMnÙ=˚ 54.93805ÚManganese ˇFeˆ=˚ 55.847¸Iron ˇCoı=˚ 58.9332˜Cobalt ˇNi¯=˚ 58.69 ˇNickel ˇCuı=˚ 63.546¸Copper ˇZnˆ=˚ 65.39 ˇZinc ˇGaÙ=˚ 69.723¸Gallium ˇGeÙ=˚ 72.61 ˇGermanium ˇAsı=˚ 74.92159ÚArsenic ˇSeı=˚ 78.96 ˇSelenium ˇBr˜=˚ 79.904¸Bromium ˇKr˜=˚ 83.8ÍKrypton 5.ıRbı=˚ 85.4678˜Rubidium ˇSr˜=˚ 87.62 ˇStrontium ˇY˙=˚ 88.90585ÚYttrium ˇZr¯=˚ 91.224¸Zirconium ˇNbı=˚ 92.90638ÚNiobium ˇMoÙ=˚ 95.94 ˇMolybdenum ˇTcˆ=˚ 98.9063˜Technetium ˇRuı=˚101.07˚Ruthenium ˇRhı=˚102.9055ˆRhodium ˇPdı=˚106.42˚Palladium ˇAgı=˚107.8682ˆSilver ˇCdı=˚112.411˚Cadmium ˇIn¯=˚114.82˚Indium ˇSnı=˚118.71˚Tin ˇSbı=˚121.75˚Antimony ˇTeˆ=˚127.6ÈTellurium ˇI˝=˚126.9045ˆIodine ˇXeı=˚131.29˚Xenon 6.ıCsı=˚132.9054ˆCesium ˇBaı=˚137.327˚Barium ˇLaˆ=˚138.9055ˆLanthanum ˇCeı=˚140.115˚Cerium ˇPr˜=˚140.9077ˆPraseodymium ˇNdı=˚144.24˚Neodymium ˇPmÛ=˚146.9151ˆPromethium ˇSmÛ=˚150.36˚Samarium ˇEuı=˚151.965˚Europium ˇGdÙ=˚157.25˚Gadolinium ˇTbˆ=˚158.9253ˆTerbium ˇDyı=˚162.5ÈDysprosium ˇHoı=˚164.9303ˆHolmium ˇEr˜=˚167.26˚Erbium ˇTmÙ=˚168.9342ˆThulium ˇYbı=˚173.04˚Ytterbium ˇLuˆ=˚174.967˚Lutetium ˇHf˜=˚178.49˚Hafnium ˇTaˆ=˚180.9479ˆTantalum ˇW¯=˚183.85˚Tungsten ˇReı=˚186.207˚Rhenium ˇOsÙ=˚190.2ÈOsmium ˇIr˙=˚192.22Iridium ˇPt˜=˚195.08˚Platinum ˇAuı=˚196.9665ˆGold ˇHgı=˚200.59˚Mercury ˇTl˘=˚204.3833ˆThallium ˇPbı=˚207.2ÈLead ˇBi¯=˚208.9804ˆBismuth ˇPoı=˚208.9824ˆPolonium ˇAt˜=˚209.9871ˆAstatine ˇRnı=˚222.0176ˆRadon 7.ıFr¯=˚223.0197ˆFrancium ˇRaı=˚226.0254ˆRadium ˇAcı=˚227.0278ˆActinium ˇThˆ=˚232.0381ˆThorium ˇPaı=˚231.0359ˆProtactinium ˇU˙=˚238.0289ˆUranium ˇNpı=˚237.0482ˆNeptunium ˇPuı=˚244.0642ˆPlutonium ˇAmÛ=˚243.0614ˆAmericium ˇCmÛ=˚247.0703ˆCurium ˇBkı=˚247.0703ˆBerkelium ˇCf˜=˚251.0796ˆCalifornium ˇEsı=˚252.0829ˆEinsteinium ˇFmÙ=˚257.0951ˆFermium ˇMdÙ=˚258.0986ˆMendelevium ˇNoı=˚259.1009ˆNobelium ˇLr¯=˚260.1053ˆLawrencium ˇRf˜=˚261ÒRutherfordium ˇHaı=˚262ÒHahnium